Abstract

We attempt to explore the implications of the "3C convergence" (convergence of content, computers and communications) on the HCI research agenda. The interaction between humans and the 3C's is becoming a daily staple as we continue to witness powerful computers unite in a networked environment where wireline and wireless communications enjoy broadening bandwidths that permit the transmission of multimedia content. We draw illustrative examples from the Hong Kong environment related to the 3C convergence, and we present issues which we believe to be important for the research and development of a universal, useful and usable human-computer interface.

Keywords: information technology, spoken language interface, multilingual interfaces.

Introduction

This paper attempts to explore the implications of the "3C convergence" (convergence of content, computers and communications) on the research agenda of HCI. We continue to witness increasingly powerful computers unite in a networked environment where wireline and wireless communications enjoy broadening bandwidths that permit the transmission of multimedia content. The interaction between humans and the 3C's is becoming a daily staple.

For the purpose of illustration, we can draw a few examples from the Hong Kong environment [1]. Hong Kong has implemented fully digital fiber network since 1993, and the available bandwidth allows deployment of interactive services such as on-demand movies, music and radio, bundled with high-speed Internet access (1.5Mbps), via a telephone line and a television set-top box. Chinese (in addition to alphanumeric) pagers are pervasive, and approximately one out of every two people carries a mobile phone. Pagers and mobile phone screens display real-time information such as news headlines, weather, stock trades, etc. throughout the day. As we can see, HCI issues are abundant in the deployment of such information and communication services. We consider HCI issues in relation to each of the 3C's.

HCI and Content

Content is continuously created, processed, stored, retrieved and displayed. As text, graphics, speech, video, audio and data integrate horizontally in various multimedia applications, we may explore the development of a unified framework or a unified user interface to support the integration of multimedia.

Another interesting aspect related to content is internationalization. The bilingual populace in Hong Kong speaks/reads both English and Chinese. In speaking Chinese, Hong Kong has two predominant dialects – Putonghua and Cantonese. From the perspective of textual display, Chinese may be encoded in different forms such as GB or Big5. Electronic information in Hong Kong often exists in both English and Chinese, which may mean two different versions by language, or three different versions by the encoding scheme. In many cases, the text is "mixed-lingual", i.e. the running text may be primarily in English but includes Chinese terms, or primarily in Chinese but including English terms, or the two languages may be mixed syntactically.
as well as lexically.5 “Mixed-linguality” creates problems in decoding, since Big5 or GB requires 16 bits per character instead of the standard 8 bits. It is very cumbersome that a given document needs to be duplicated into versions in English, Chinese Big5 and Chinese GB, with significant redundancy. We need to develop elegant methods to support multilinguality or “mixed-linguality” for the interface. This may involve technologies such as translation, transcoding, meta-data (Chinese XML), etc.

Aside from textual displays, we also need to support three languages in spoken language interfaces. At the Chinese University of Hong Kong, our group in the Human-Computer Communications Laboratory has developed three monolingual speech recognizers, together with one trilingual speech recognizer, all of which support information inquiry for real-time financial information [2]. Since every user has individual preferences in choosing which language to use and when to use it, language flexibility is best supported by the trilingual speech recognizer as the human-computer speech interface. Similar issues also arise for speech synthesis, as the language chosen for speech input generally matches that for speech output [2].

HCI and Communications

Network bandwidth has a direct impact on the latencies in system response times and display rates, which are critical elements in HCI. The issue becomes particularly important in situations such as streaming video or audio, where the transmission rate needs to match or exceed the display rate.

Bandwidths may vary across a wide range, e.g. from telephone modems to Ethernet, ATM, etc. Hence some network backbones can support high data rates, while others will experience long delays. As an example, we can consider a sizeable image map on an information server, which may be retrieved by local clients residing on the same highspeed backbone as the server, but also remote clients accessing through a telephone modem. It is desirable to enable all clients to access the entire image within a reasonable amount of time. If we apply the “information-seeking mantra” presented by Shneiderman [3] – “Overview first, zoom and filter, then details on demand,” then we should consider providing a compact version of the same image, trading off size with resolution, to tailor it for remote clients accessing over narrow bandwidths. This should be followed by further details of the image provided on-demand. One research question here is: How can we provide “multiresolution” information displays that may be scaled up or down to accommodate for bandwidth availability?

Regarding the transmission of speech signals for spoken language interfaces, the landscape is also changing rapidly. Previous research has focused on microphone and wireline telephone speech. However, the emergence of various wireless telephone standards (e.g. D-AMPS, CDMA, GSM, PCS, and dual GSM and PCS, all of which are used in Hong Kong) as well as voice-over-IP (VoIP) applications calls for further speech technology developments. For example, handling interrupted transmissions due to cellular dropouts and blind spots, or the effect of packet losses and delays in VoIP may be relevant research problems.

HCI and Computers

Computers are appearing in many shapes and forms – there are large server machines, desktop machines, portable laptops and handheld PCs. Much variation exists in terms of computing power, storage space, screen size, keyboards, cameras, microphones and other peripheral interaction devices. The availability of computing power and storage space can help alleviate the demands on network bandwidth. Screen sizes vary from that of desktop monitors (or larger) to the few-inch screens on handheld PCs, to the screens of pagers or mobile phones which can only display a few lines of text. One research issue is how we can design the interface of a given application to migrate gracefully from one computer to another. For example, when visual information display is constrained by a small screen size, the information transmission needs to be diverted to other input and output modalities for effective human-computer communication.

We can consider again the case of a spoken language interface. It may be “displayless” (where the user communicates with the system solely over the telephone channel) or “displayful” (where the user is equipped with the telephone augmented with a computer screen display). A previous system named WHEELS [4] serves as an example; the user can converse with the system in order to browse through several thousand electronic automobile classified ads. In the “displayless” version, WHEELS relies heavily on speech synthesis to provide the user with automobile descriptions; whereas in the “displayful” version, the entire automobile description (original text of the classified) is simply shown on the computer screen. We may wish to pursue this research direction, and explore how different interaction modalities may be combined in a flexible manner, to enhance the portability of the effective interface across computing platforms with varying resources.

Issues for an HCI Research Agenda

In the above, we have present the general areas considered to have critical implications on HCI, namely content, communications, computing and their convergence. We now present several related issues specific to the area of spoken language interfaces:

On Content:

- What mechanisms should we use to effectively express content in terms of spoken language to be presented as synthesized speech to the user?
- How should human-computer spoken dialogs be designed in order to enhance such spoken presentation of information?
• How should we design spoken language interfaces for multi-lingual (or “mixed-lingual”) applications?

On Communication and Computing:

• How can we adapt speech technologies to support voice input over different transmission protocols?

• Depending on the availability of network bandwidth, how can we seamlessly migrate between a “displayless” and a “displayful” interface? A visual display generally involves images, and hence has higher demands on bandwidth availability. Image rendering will also require more computation and storage as well. On the other hand, a displayless interface has lower demands on bandwidth availability, as it can be implemented entirely on a single phone line. However, the information delivery rate along the audio channel alone becomes much slower.

• For a given application, how can we implement a “displayful” spoken language interface that is portable from a desktop computer-telephony setup to a handheld device with a tiny screen and wireless voice services?

We believe that pursuing these research issues may lead us towards the development of a universal human-computer interface, or more specifically, a universal spoken language interface (SLI). This SLI should be usable by humans who speak (multiple) different languages. It should be able to present various kinds of content in spoken form, optionally enhanced by a visual display. The SLI would also remain useful by adapting to the availability of computing resources and communication bandwidths.

Acknowledgments

The author wishes to thank the participants of the CHI99 Workshop “An International Research Agenda for HCI” for an enlightening discussion and exchange of ideas.

References

About the Author

Helen Meng is an Assistant Professor at the Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong. She received her S.B., S.M. and Ph.D. degrees from the Massachusetts Institute of Technology. She joined CUHK in 1998. Recently she has set up the Human-Computer Communications Laboratory in the Department (http://www.se.cuhk.edu.hk/hccl/). Her main research focus is in the development of conversational systems for the trilingual environment of Hong Kong, which includes the use of a plethora of technologies such as speech recognition, natural language understanding, dialog modeling and speech generation.

Contact Information

Helen Meng
Assistant Professor
Human-Computer Communications Laboratory
Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong
Shatin, N. T.,
Hong Kong, China
hmeng@se.cuhk.edu.hk
(852) 2609-8327

Notes

A previous version of this paper was accepted in CHI 99 Workshop 8 - “An International REsearch Agenda for HCI”

1. Hong Kong Telecom's iTV™ service,

2. Big5 encodes the traditional Chinese character set used in Taiwan ROC, and GB encodes the simplified Chinese character set used in mainland China. There is overlap between the two character sets. Hong Kong is situated at the crossroads as far as character sets is concerned, and hence utilizes both encodings.

3. This is found in the local (Hong Kong) English newspapers.

4. This is found in the local (Hong Kong) Chinese newspapers.

5. This is found locally (in Hong Kong) in everyday conversations, radio shows, etc.

6. Speech is especially desirable for the Chinese language, whose ideographic nature renders typing a cumbersome input method.